Войти
Все секреты компьютера для новичка и профессионала
  • The Elder Scrolls Online - Карманная кража - Гайд: как заработать денег в teso (Воровство) Скачать видео и вырезать мп3 - у нас это просто
  • Warhammer Online Обзор, описание, отзывы Вархамер Онлайн Что говорят игровые издания, критики и геймеры про Warhammer Online: Age of Reckoning
  • Перехвалил я спср экспресс (spsr express) или отправление отправлено отправителю
  • Как выровнять текст в ворде по обоим краям Как сделать выравнивание в ворде
  • Как написать дробь: на клавиатуре и не только
  • Изменение персонального пароля
  • Атомные энергетические установки. Ядерные энергетические установки. скачать DjVu. Ядерная энергетическая установка - это что такое

    Атомные энергетические установки. Ядерные энергетические установки. скачать DjVu. Ядерная энергетическая установка - это что такое

    В 2009 г. Комиссией при Президенте Российской Федерации по модернизации и технологическому развитию экономики России принято решение о реализации проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса».
    ОАО «НИКИЭТ» определен Главным конструктором реакторной установки.
    Федеральное космическое агентство выдало НИКИЭТ лицензию №981К от 29.08.2008 г. на осуществление космической деятельности.

    Из интервью Ю.Г. Драгунова РИА « ». Опубликовано 28.08.2012

    Россия активно развивает атомную энергетику, опираясь на колоссальный опыт и знания, накопленные за десятилетия отечественной атомной программы.
    Одним из первопроходцев по созданию прорывных технологий в нашей стране и в мире является Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля (НИКИЭТ), отмечающий в этом году 60-летний юбилей. Специалисты института внесли неоценимый вклад в обороноспособность нашей страны, разработали проекты первого реактора для наработки оружейных изотопов, первой реакторной установки для атомной подводной лодки, первого энергореактора для АЭС. По проектам и с участием НИКИЭТ создано 27 исследовательских реакторов в России и за её пределами.
    И сегодня Институт конструирует совершенно новые реакторы, работает над созданием реакторной установки для уникальной ядерной энергодвигательной установки мегаваттного класса для космического корабля, не имеющей мировых аналогов.
    О том, как идут работы по прорывным направлениям российской ядерной науки и техники, РИА Новости рассказал директор - генеральный конструктор НИКИЭТ, член-корреспондент РАН Юрий Григорьевич Драгунов.
    - Институт создает уникальный ядерный двигатель для нового российского космического корабля. На каком этапе сейчас этот проект?
    - Все 60 лет своего существования Институт следует девизу основателя и первого директора НИКИЭТ академика Н.А. Доллежаля: «Если можешь – иди впереди века». И подтверждение тому - данный проект. Создание этой установки - это комплексная работа ГНЦ ФГУП «Центр Келдыша», ОАО РКК «Энергия», КБХМ им. А.М. Исаева и предприятий Госкорпорации «Росатом». Наш Институт определен единственным исполнителем по реакторной установке и определен как координатор работ от организаций Росатома. Работа действительно уникальная, аналогов сегодня нет, поэтому она идет достаточно сложно. Поскольку мы – организация конструкторская, мы имеем определенные ступени, этапы и мы их шаг за шагом проходим. В прошлом году мы завершили разработку эскизного проекта реакторной установки, в этом году выполняем технический проект реакторной установки. Требуется огромный объем испытаний, особенно топлива, в том числе исследования поведения топлива и конструкционных материалов в реакторных условиях. Работа по техническому проекту будет достаточно длинной, примерно около 3-х лет, но первую стадию технического проекта, основную документацию мы в этом году подготовим. Мы сегодня определили и приняли техническое решение по выбору варианта конструкции тепловыделяющего элемента и окончательное техническое решение по выбору варианта конструкции реактора. И буквально пару недель назад приняли техническое решение по выбору варианта конструкции активной зоны и по ее компоновке.
    - А какие проблемы есть? Неужели все так гладко идет?
    - Сегодня у нас достаточно широкая кооперация, более трех десятков организаций участвуют в разработке проекта реакторной установки. Все договоры по этой теме заключены, и есть полная уверенность, что мы эту работу сделаем вовремя. Работа координируется советом руководителя проекта под моим председательством, мы раз в квартал рассматриваем состояние работ. Одна проблема, я не могу о ней не сказать. К сожалению, как и везде по всей тематике, у нас договоры заключаются сроком на один год. Процесс заключения растягивается, и, с учетом времени на конкурсные процедуры, фактически мы съедаем у себя время. Я в НИКИЭТ принял решение, мы открываем специальный заказ и начинаем работать с 11 января. А вот участников гораздо труднее привлечь. Проблема есть, поэтому мы сегодня озадачили наших участников, чтобы они дали планы до завершения разработки, как минимум, на трехлетний период. Мы формируем эти предложения, и будем выходить в правительство с просьбой все-таки для этого проекта перейти на трехлетний контракт. Тогда мы будем четко видеть график и лучше организовывать и координировать работы по проекту. Решение этой задачи очень важно для успешной реализации проекта.
    - Это будет чисто российский проект, никаких зарубежных партнеров для НИОКРов привлекать не будете?
    - Я думаю, что проект будет чисто российский. Здесь все-таки очень много ноу-хау, много новых решений и, по моему мнению, проект должен быть чисто российский.
    - Топливо в космической реакторной установке какое будет?
    - Принципиально на этой стадии технического проекта приняли вариант диоксидного топлива. Того топлива, которое имеет опыт эксплуатации в установках с термоэмиссией. Мы сделали тепловыделяющий элемент секционным, чтобы обеспечить те условия, которые уже проверены в действующих реакторах. Да, это новизна, да, это инновационный проект, но по ключевым элементам он должен быть отработан и должен успеть в те сроки, которые поставлены президентским проектом.
    - Вы рассматриваете вариант перегрузки топлива в установке?
    - Нет, вариант перегрузки мы на сегодня не рассматриваем. Это может быть многоразовое использование, но мы рассчитываем на 10 лет эксплуатации и я так полагаю, судя по результатам обсуждения в научной среде, с Роскосмосом, что на сегодня задача сделать работу установки дольше не ставится. Роскосмос обсуждает увеличение мощности установки, но это, в общем-то, не будет проблемой, если мы этот проект сделаем, реализуем и самое главное – испытаем на стенде наземный прототип. После этого мы его легко переработаем на большую мощность.

    Создание ядерных энергетических и энергодвигательных установок космического назначения

    На Семипалатинском полигоне с 1960 года по 1989 год проводились работы по созданию ядерного ракетного двигателя.

    Были созданы:

    Реакторный комплекс ИГР;
    стендовый комплекс «Байкал-1» с реактором ИВГ-1 и двумя рабочими местами для отработки изделий 11Б91;
    реактор РА (ИРГИТ).

    Реактор ИГР

    Реактор ИГР является импульсным реактором на тепловых нейтронах с гомогенной активной зоной, представляющей собой кладку из содержащих уран графитовых блоков, собранных в виде колонн. Отражатель реактора сформирован из аналогичных блоков, не содержащих урана.

    Реактор не имеет принудительного охлаждения активной зоны. Выделившееся в процессе работы реактора тепло аккумулируется кладкой, а затем через стенки корпуса реактора передается воде контура расхолаживания.


    Реактор ИГР



    Реактор ИВГ-1 и системы подачи компонентов


    Реактор РА (ИРГИТ)

    Достигнутые результаты

    1962-1966 годы

    В реакторе ИГР проведены первые испытания модельных твэлов ЯРД. Результаты испытаний подтвердили возможность создания твэлов с твердыми поверхностями теплообмена, работающих при температурах свыше 3000К, удельных тепловых потоках до 10 МВт/м2 в условиях мощного нейтронного и гамма-излучений (проведен 41 пуск, испытано 26 модельных ТВС различных модификаций).

    1971-1973 годы

    В реакторе ИГР проведены динамические испытания высокотемпературного топлива ЯРД на термопрочность, в ходе которых реализованы следующие параметры:

    Удельное энерговыделение в топливе – 30 кВт/см3
    удельный тепловой поток с поверхности твэлов – 10 МВт/м2
    температура теплоносителя – 3000К
    скорость изменения температуры теплоносителя при увеличении и снижении мощности – 1000 К/с
    длительность номинального режима – 5 с

    1974-1989 годы

    В реакторе ИГР проведены испытания ТВС различных типов реакторов ЯРД, ЯЭДУ и газодинамических установок с водородным, азотным, гелиевым и воздушным теплоносителями.

    1971-1993 годы

    Проведены исследования выхода из топлива в газообразный теплоноситель (водород, азот, гелий, воздух) в диапазоне температуры 400…2600К и осаждения в газовых контурах продуктов деления, источниками которых являлись экспериментальные ТВС, размещенные в реакторах ИГР и РА.

    Сравнительные показатели результатов, полученных на реакторе ИВГ-1
    и по программам разработок ЯРД в США

    СССР
    1961-1989
    Затраченные средства, млрд.$ ~ 0,3
    5
    поэлементный
    Топливная композиция
    UC-ZrC,
    UC-ZrC-NbC


    средняя/максимальная, МВт/л 15 / 33
    3100
    Удельный импульс тяги, с ~ 940
    4000

    США
    Период активных действий по тематике 1959-1972
    Затраченные средства, млрд.$ ~2,0
    Количество изготовленных реакторных установок 20
    Принципы отработки и создания интегральный
    Топливная композиция Твердый раствор
    UC2 в графитовой
    матрице

    Теплонапряженность активной зоны,
    средняя/максимальная, МВт/л 2,3 / 5,1
    Максимально достигнутая температура рабочего тела, К 2550 2200
    Удельный импульс тяги, с ~ 850
    Ресурс работы на максимальной температуре рабочего тела, с 50 2400

    Для военки - это прекрасно, но перспективы для гражданки это открывает еще более невероятные. Голосовать!

    Москва, 4 мар - ИА сайт. Военные в России завершили испытания малогабаритной ядерной энергетической установки (МЯЭУ) для крылатых ракет и автономных подводных аппаратов.

    Власти РФ не 1 й раз допускают такие утечки, которые позже подтверждаются фактически.

    Можно верить и нынешнему сигналу, ведь скоро выборы Президента, и успешные испытания МЯЭУ - это отличный инфоповод.

    Это не просто инфоповод - это фантастика, особенно для крылатых ракет.

    Это настолько невероятно, что на Западе до сих пор скептически относились к словам В. Путина.

    Подтверждение завершения таких испытаний должно, вероятно, убедить всех неверующих.

    В понимании обывателей, ядерная энергетическая установка - это что-то вроде атомной электростанции (АЭС).

    О малогабаритной ядерной установке говорилось с 1950 гг. О малогабаритной американской ядерной установке увлекательно написано в романе А.Маклина Золотое Рандеву.

    Но чтобы вот так просто в послании к ФС РФ объявить о крылатой ракете с ядерной энергетической установкой на весь мир?

    Ошеломил, откровенно.

    Президент РФ В. Путин 1 марта 2018 г с опозданием почти на 1 квартал зачитал послание к Федеральному Собранию России, используя самые современные средства продвижения информации в умы слушателей.

    К обычной харизме В. Путина политтехнологи добавили инфографики, после чего стало ясно, что все слова кандидата в президенты попадут в цель.

    Военке В. Путин посвятил времени в разы больше, чем гражданке.

    Если по гражданским направлениям развития общества и экономики, в основном, в Послании были прекрасные намерения, то военная промышленность доказала свою приоритетность.

    Темпы развития промышленности в царской России всегда опережали среднемировые.

    После рекордного 1914 г испуг мировой элиты был настолько серьезен, что в 1917 г случилась Великая октябрьская социалистическая революция, которая на много лет отбросила нашу страну назад.

    СССР позже выправился, но с тех пор лидером всей экономики всегда была военная промышленность, которая под контролем властей стремительно развивалась.

    Ничего не изменилось и сейчас.

    Экономика страны развивается крайне неравномерно.

    Санкции Запада - это унизительный щелчок по носу властям России.

    В 1914 г было невозможно представить, что кто-то может вводить такие санкции против России.

    Ныне в нефтегазе санкции больно ударяют по российским компаниям, потому что в РФ нет инновационных технологий и оборудования для работы:

    В Арктике;

    На шельфе при глубине моря более 150 м;

    По добыче трудноизвлекаемых запасов (), в тч сланцевых углеводородов.

    сайт говорит о нефтегазе, потому что это наш профиль, но такая же ситуация пока и во многих других отраслях промышленности.

    Но только не в военной промышленности.

    И В. Путин это изящно доказал конкретными примерами, ошеломив обывателей и не только, обилием не имеющим аналогов в мире военных новинок: ракетный комплекс Сармат, подводные беспилотники, крылатая ракета с ядерной энергоустановкой, авиационный ракетный комплекс Кинжал, лазерное и гиперзвуковое оружие.

    Впечатляют все новинки, но о малогабаритной ядерной энергетической установки (МЯЭУ) нужно сказать отдельно.

    Успешные испытания МЯЭУ открывают невероятные перспективы для гражданских отраслей промышленности, в 1 ю очередь энергетике и транспорте.

    Это совершеннейшая фантастика, как в романах Ж. Верна.

    Как можно применить МЯЭУ и где:

    Железнодорожный транспорт- высокоскоростные транспортные средства обычной эксплуатации, реально высокоскоростные со скоростью более 500 км/час;

    Гражданский морской транспорт и военный флот - скорости будут более 60 узлов, как у глиссеров на подводных крыльях, но и о крыльях придется подумать тоже;

    Автотранспорт, в 1 ю очередь, грузовики, вероятно;

    Авиация - вертикальный взлет и посадка даже для грузовых самолетов.

    Все это связано с малогабаритностью энергетической установки и эффективностью топлива, позволяющего сократить периодичность заправки.

    Обыватели это знают, потому что это реализовано на атомных ледоколах и подводных крейсерах.

    Что касается собственно МЯЭУ - то это большой секрет.

    Говорится о ядерной установке, а не ядерном двигателе, поэтому можно предположить, что есть какой-то двигатель преобразующий ядерную энергию в энергию движения.

    Можно только догадываться о технологии его работы, хотя, если анонсированную неограниченность воспринимать буквально, несколько предположений сделать можно:

    Речь идет о крылатой ракете, поэтому в технологии работы, вероятно, активно используется воздух, количество которого неограничено;

    При использовании подводного беспилотника неограниченного радиуса действия, очевидно, для формирования тяги в технологии используется также неограниченный ресурс -вода, хотя и агрессивная для материалов среда.

    Можно не сомневаться, что военная промышленность при прямом управлении эффективно внедрит все новые, фантастические разработки российских умельцев, сделав Россию более защищенной от врагов.

    Но есть большая вероятность того, что на гражданке Запад Россию опередит, как это бывало не раз.

    Как адаптировать военные разработки в гражданских отраслях промышленности?

    Именно здесь - камень преткновения.

    Коррупция в РФ душит конкуренцию и активность бизнеса, поэтому в России так много талантливых разработок и так мало внедрения этих разработок.

    В чем преимущества МЯЭУ?

    К энергетической установке судна с атомным двигателем относятся реактор, парогенератор и турбинная установка, приводящая в движение судовой движитель. Реактор - это установка для получения ядерных цепных реакций, во время которых возникает энергия, преобразуемая далее в механическую. Принцип действия ядерного реактора показан на рисунке 8.

    Принцип действия ядерного реактора

    Известно, что энергия, выделяемая при использовании 1 кг урана, примерно равна энергии, получаемой при сгорании 1500 тонн мазута. Сердцем ядерной установки является реактор: в нем осуществляется управляемая ядерная реакция, в результате которой образуется тепло, отводимое с помощью теплоносителя - воды. Радиоактивная вода-теплоноситель перекачивается в парогенератор, где за счет ее тепла происходит образование пара из не радиоактивной воды. Пар направляется на диски турбин, которые приводят во вращение турбогенераторы, работающие на гребные электродвигатели, а последние вращают гребные винты. Отработавший пар направляется в конденсатор, где он снова превращается в воду и нагнетается в парогенератор. Принцип действия атомной энергетической установки показан на рисунке 9.

    схема атомной энергетической установки с реактором, охлаждаемым водой под давлением

    Большое внимание уделяется безопасности эксплуатации ядерной установки, так как находящиеся на судне люди в какой-то мере подвержены опасности радиоактивного облучения, поэтому ядерный реактор изолирован от окружающей среды защитным экраном, не пропускающим вредные радиоактивные лучи. Обычно применяются двойные экраны. Первичный экран окружает реактор и изготовляется из свинцовых пластин с полиэтиленовым покрытием и из бетона. Вторичный экран окружает парогенератор и заключает внутри себя весь первый контур высокого давления. Этот экран в основном изготовляют из бетона толщиной от 500 мм до 1095 мм, а также из свинцовых пластин толщиной 200 мал и полиэтилена толщиной 100 мм. Оба экрана требуют много места и имеют очень большую массу. Наличие таких экранов является большим недостатком атомных энергетических установок. Расположение атомной энергетической установки на судна показано на рисунке 10. Другим, еще более существенным недостатком, является, несмотря на все защитные меры, опасность заражения окружающей среды как во время нормального функционирования энергетической установки вследствие отходов использованного топлива, выпуска трюмной воды из реакторного отсека и т. д., так и во время случайных аварий судна и атомной энергетической установки .

    ядерная энергетическая установка на судне

    Альтернативные энергетические установки

    принцип действия двигателя Стерлинга

    Еще до второй мировой войны кораблестроителями предпринимались попытки создать для подводных лодок некую альтернативу дизель-электрической энергетической установке - так называемый единый двигатель для надводного и подводного хода. По разным причинам в то время все эти попытки не вышли из стадии экспериментов, но уже в 1960-х годах к ним снова вернулись. Это было вызвано сразу несколькими причинами. Во-первых, Балтийское море объявлено безъядерной зоной, что подразумевает отсутствие у прибалтийских стран кораблей с ядерными силовыми установками. Во-вторых, по политическим мотивам такие военные корабли не могут находиться на вооружении Германия и Япония. В-третьих, строительство и эксплуатационное обслуживание атомных подводных лодок для многих стран не по карману. Наиболее продуктивно над созданием единого не ядерного двигателя работали в Швеции, Нидерландах, Великобритании и Германии.

    Но вместе с тем для некоторых типов судов электродвигатель является единственно приемлемым. Это суда с частой сменой режимов нагрузки гребной установки, корабли, требующие повышенных маневровых качеств, длительное время работающие с пониженной мощностью. Такими судами являются ледоколы, буксиры, паромы, китобойные суда, драгеры и некоторые другие.

    Двигатель Стерлинга представляет собой тепловой поршневой двигатель с внешним подводом теплоты, в замкнутом объеме которого циркулирует постоянное рабочее тепло (газ), нагреваемое от внешнего источника тепла и совершающее полезную работу за счет своего расширения. Принцип действия двигателя Стерлинга показан на рисунке 11.

    В отличие от двигателя внутреннего сгорания двигатель Стерлинга имеет в цилиндре две переменные по объему полости - горячую и холодную. Рабочее тело сжимается в холодной полости и поступает в горячую, затем после нагрева газ движется в обратном направлении и поступает в холодную полость, где, расширяясь, производит полезную работу. Такое двустороннее движение газа обеспечивается наличием двух поршней в каждом цилиндре: поршня-вытеснителя, регулирующего перетекание газа, и рабочего поршня, совершающего полезную работу. Объем горячей полости и верхней части цилиндра регулируется поршнем-вытеснителем, а объем холодной полости, находящейся между обоими поршнями, - их совместным перемещением. Оба поршня связаны механически и совершают согласованное движение, обеспечиваемое специальным механизмом, одновременно заменяющим кривошипно-шатунный механизм.

    При работе двигателя можно выделить четыре основных последовательных положения поршней, определяющих рабочий цикл двигателя: а) - рабочий поршень в крайнем нижнем положении, поршень-вытеснитель - в крайнем верхнем. При этом большая часть газа находится между ними в холодном пространстве (охлаждение); б) - поршень-вытеснитель находится в верхнем положении, а рабочий поршень движется вверх, сжимая холодный газ (сжатие); в) - поршень-вытеснитель движется вниз, приближаясь к рабочему поршню и вытесняя газ в горячую полость (нагревание); г) - горячий газ расширяется, совершая полезную работу воздействием на рабочий поршень (расширение). На пути газа устанавливается регенератор, который отбирает часть тепла при движении через него горячего газа и отдает его при его движении после охлаждения и сжатия в обратную сторону.

    Наличие регенератора теоретически позволяет довести КПД двигателя Стерлинга до 70 процентов. Регулирование мощности двигателя достигается изменением количества газа. В качестве рабочего тепла применяются газы с высокими теплотехническими свойствами (водород, гелий, воздух и пр.).

    Двигатели Стирлинга обладают следующими уникальными особенностями: - возможностью применения любого источника тепла (жидкого, твердого, газообразного и ядерного топлива, солнечной энергии и т. д.); - работой в большом диапазоне температур при малом перепаде давления сжатия и расширения; - регулированием мощности путем изменения количества рабочего тепла в цикле при неизменных высшей и низшей температурах газа;

    Эти особенности обеспечивают двигателю Стерлинга перед другими установками следующие преимущества, как многотопливность и малая токсичность продуктов сгорания топлива; малошумность и хорошая уравновешенность; высокий КПД на режимах малых мощностей. Благодаря этим достоинствам на двигатель и обратили внимание шведские подводники, воплотив идею в реальность на современной подводной лодке типа «Gotland ». Но если по своему КПД двигатели Стирлинга соответствуют современным дизелям, то уступают им по мощности. Поэтому они могут использоваться на подводных лодках только как дополнительные двигатели к классической дизель-электрической силовой установке.

    Атомная энергетическая установка - силовая установка, работающая на энергии цепной реакции деления ядра. Атомную энергетическую установку, которая в основном является модификацией паротурбинной, начали применять на судах в конце 50-х гг. XX в. К энергетической установке судна с атомным двигателем относятся реактор, парогенератор и турбинная установка, приводящая в движение судовой движитель. Реактор - это установка для получения ядерных цепных реакций, во время которых возникает энергия, преобразуемая далее в механическую. В ядерном реакторе созданы такие условия, что число расщеплений ядра за единицу времени является величиной постоянной, т. е. цепная реакция происходит постоянно.

    Конструкция и принцип действия ядерного реактора.

    1 - стальной корпус; 2 - замедлитель; 3 - отражатель; 4 - защита; 5 - тепловыделяющие элементы; 6 - вход теплоносителя; 7 - выход теплоносителя; 8 - регулирующие стержни.

    Ядерное топливо содержит делящийся материал, как правило, уран или плутоний. При расщеплении ядер атомов, которые распадаются на так называемые фрагменты - или на свободные нейтроны высоких энергий, освобождается очень много энергии. Для уменьшения высокой энергии нейтронов служит замедлитель: графит, бериллий или вода. Для того чтобы свести к минимуму возможность потери нейтронов, устанавливают отражатель. Он состоит в основном из бериллия или графита. Во избежание слишком сильного потока нейтронов в реакторе на соответствующей глубине устанавливают регулирующие стержни из поглощающих нейтроны материалов (кадмия, бора, индия). Энергообмен в реакторе происходит с помощью теплоносителей, воды, органических жидкостей, сплавов из легкоплавких металлов и т. д. В настоящее время на судах применяют, как правило, реакторы, охлаждаемые водой под давлением.

    Схема атомной энергетической установки с реактором, охлаждаемым водой под давлением.

    1 - реактор; 2 - первичная биологическая защита; 3 - вторичная биологическая защита; 4 - парогенератор; 5 - нагревательный змеевик первого контура; 6 - циркуляционный насос первого контура; 7 - турбина высокого давления; 8 - турбина низкого давления; 9 - редуктор; 10 - конденсатор; 11 - насос вторичного контура; 12 - вход морской воды; 13 - выход морской воды.

    Эта установка имеет два контура циркуляции. Первый контур - циркуляция воды под высоким давлением. Вода первого контура служит одновременно теплоносителем ядерного реактора и имеет давление приблизительно от 5,8 до 9,8 МПа. Она протекает через реактор и нагревается, например на судах «Отто Хан» (ФРГ) и «Мутсу» (Япония), до 278°С. При этом давление воды противодействует испарению. Горячая вода первого контура, протекая через нагревательный змеевик, отдает свое тепло парогенератору, затем она снова возвращается к реактору. К парогенератору из второго контура низкого давления подается конденсат. Нагреваемая в парогенераторе вода испаряется. Этот пар с относительно низким давлением (например, на американском судне «Саванна» оно составляет 3,14 МПа) служит для питания турбин, которые через редуктор приводят во вращение гребной винт.

    Ядерный реактор изолирован от окружающей среды защитным экраном, не пропускающим вредные радиоактивные лучи. Обычно применяются двойные экраны. Первый (первичный) экран окружает реактор и изготовляется из свинцовых пластин с полиэтиленовым покрытием и из бетона. Вторичный экран окружает парогенератор и заключает внутри себя весь первый контур высокого давления. Этот экран в основном изготовляют из бетона толщиной от 500 мм («Отто Хан») до 1095 мм («Мутсу»), а также из свинцовых пластин толщиной 200 мал и полиэтилена толщиной 100 мм. Оба экрана требуют много места и имеют очень большую массу. Например, первичный экран на судне «Саванна» весит 665 т, а вторичный - 2400 т. Наличие таких экранов является большим недостатком атомных энергетических установок. Другим, еще более существенным недостатком, является, несмотря на все защитные меры, опасность заражения окружающей среды как во время нормального функционирования энергетической установки вследствие отходов использованного топлива, выпуска трюмной воды из реакторного отсека и т. д., так и во время случайных аварий судна и атомной энергетической установки.

    К неоспоримым преимуществам относятся очень низкий расход топлива и практически неограниченная дальность плавания. Например, судно «Отто Хан» (ФРГ) за три года не израсходовало даже 20 кг урана, в то время как расход топлива обычной паротурбинной энергетической установкой на судне таких размеров составил 40 тыс. т. Дальность плавания японского судна «Мутсу» составляет 145 тыс. миль. Несмотря на эти преимущества, атомные энергетические установки широко применяются только на боевых кораблях. Особенно выгодно их использовать на крупных подводных лодках, которые долгое время могут находиться под водой, так как для получения тепловой энергии в реакторе воздуха не требуется. Кроме того, атомными энергетическими установками оснащаются мощные ледоколы, используемые в северных широтах земного шара.

    1 - машинное отделение; 2 - контейнер с реактором; 3 - отсек вспомогательных механизмов; 4 - хранилище отработавших ТВЭЛ.

    Первое широкое применение атомные батареи нашли в космосе, поскольку именно там требовались источники энергии, способные вырабатывать тепло и электричество в течение длительного времени, в условиях резкого и очень сильного перепада температур, при значительных переменных нагрузках, и поскольку в условиях непилотируемых полётов радиоизлучение от источника питания не несло большой угрозы (в космосе и без него излучений хватает). Химические источники энергии не оправдали себя. Так, когда 4.10.1957 в СССР был выведен на орбиту первый искусственный спутник Земли, то его химические батареи могли давать энергию в течение 23-х дней. После этого мощность их была исчерпана. Кремниевые солнечные батареи эффективны лишь при полётах вблизи Солнца, для полётов к удалённым планетам солнечной системы они не годятся.

    Способы преобразования энергии на космических аппаратах бывают двух видов: прямое и машинное. Типы преобразователей тепловой энергии в электрическую делятся на статические (т.е. без подвижных частей), и динамические (т.е. с подвижными, вращающимися или двигающимися частями). Проблема выбора вида преобразования энергии по-прежнему остается актуальной разработчиков различных преобразователей и космических ядерных энергетических установок (КЯЭУ) на их основе.

    Так, в рамках известной инициативы НАСА по космическим ядерным энергетическим установкам для реализации программы «Прометей» по проекту «Джимо» (орбитальная экспедиция к ледяным лунам Юпитера) выбран динамический преобразователь (газо-турбинная установка на основе цикла Брайтона). Ресурс КЯЭУ 10 лет при выходной электрической мощности от 250 кВт(эл).

    Начиная с начала шестидесятых годов, достаточно широкий размах в СССР, США и ряде других стран получили работы по прямому преобразованию тепловой энергии в электрическую на основе термоэлектрических и термоэмиссионных преобразователей. Подобные методы преобразования энергии принципиально упрощают схему установок, исключают промежуточные этапы превращения энергии и позволяют создать компактные и лёгкие энергетические установки.

    СССР использовал атомные батареи в спутниках типа «Космос». В сентябре 1965 в составе аппаратов «Космос-84» и «Космос-90» были запущены радиоизотопные термоэлектрические генераторы (РИТЭГ) «Орион-1» электрической мощностью 20 Вт. Вес РИТЭГ составлял 14,8 кг, расчётный ресурс - 4 месяца. Ампулы РИТЭГ, содержащие полоний-210, были сконструированы в соответствии с принципом гарантированного сохранения целостности и герметичности при всех авариях. Этот принцип оправдал себя при авариях ракет-носителей в 1969, когда, несмотря на полное разрушение объектов, топливный блок, содержащий 25000 кюри полония-210, остался герметичным.

    Исследовательский корабль «Луноход-1», спущенный на поверхность Луны Советским Союзом в ноябре 1970 года, был обеспечен радиоактивными изотопами (полоний-210) для регулировки температуры. «Луноход-1» функционировал в течение 322 дней. За 11 лунных суток он прошёл 10,5 км, исследуя район Моря Дождей, осуществил детальное топографическое обследование 80000 кв.м. лунной поверхности. За это время был проведён 171 сеанс связи, с помощью радиотелесистем «Лунохода-1», на Землю было передано свыше 200 тысяч снимков лунной поверхности». Успешно работал радиоизотопный термоэлектрический генератор тока и на аппарате «Луноход-2».

    Источники энергии, снабженные долгоживущими изотопами, особенно необходимы для космических зондов, находящихся в "дальних странствиях" к удаленным планетам. Поэтому американские зонды «Викинг», которые были высажены на Марс в июле и сентябре 1976 с целью поисков там разумной жизни, имели на борту два радиоизотопных генератора для обеспечения энергией спускаемого аппарата. Космические станции вблизи Земли, такие, как «Салют» (СССР) и «Скайлэб» (США), получают энергию от солнечных батарей, питаемых энергией Солнца. Однако зонды для Юпитера нельзя оснащать солнечными батареями. Излучения Солнца, которое получает зонд вблизи далекого Юпитера, совершенно недостаточно для обеспечения прибора энергией. Кроме того, при космическом перелете Земля - Юпитер требуется преодолеть огромные межпланетные расстояния при продолжительности полета от 600 до 700 дней. Для таких космических экспедиций основой удачи является надежность энергетических установок. Поэтому американские зонды планеты Юпитер – «Пионер 10», который стартовал в феврале 1972 года, а в декабре 1973 года достиг наибольшего приближения к Юпитеру, а также его преемник «Пионер-2» - были оснащены четырьмя мощными батареями с плутонием-238, помещенными на концах кронштейнов длиной в 27 м. В 1987 году «Пионер 10» пролетел мимо самой удаленной от Земли планеты - Плутона, а затем это произведенное на земле космическое тело покинуло нашу Солнечную систему.

    Табл.1 Основные характеристики КЯЭУ, получившие реальный опыт использования в составе космических аппаратов в США и СССР/России


    1 – реактор; 2 – трубопровод жидкометаллического контура; 3 – радиационная защита; 4 – компенсационный бак ЖМК; 5 – холодильник-излучатель; 6 – ТЭГ; 7 – силовая рамная конструкция.

    Можно сказать, что использование радиоизотопных источников тепла вместо химических позволило в десятки и даже в сотни раз увеличить длительность пребывания спутников на орбите. Однако при использовании спутников с большим энергопотреблением мощности радиоизотопных генераторов оказывается недостаточно. При энергопотреблении более 500 Вт более рентабельно использовать ядерную реакцию деления, т.е. маленькие атомные станции.


    1 – блок системы подачи пара цезия и приводов органов регулирования; 2 – ТРП; 3 – трубопровод ЖМК; 4 – РЗ; 5 – компенсационный бак ЖМК; 6 – ХИ; 7 – рамная конструкция.

    ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ С ТЕРМОЭЛЕКТРИЧЕСКИМИ ГЕНЕРАТОРАМИ

    Космическая гонка, особенно в военной сфере, потребовала энергооснащенности спутников, в десятки раз превышающей ту, что могли обеспечить солнечные батареи или изотопные источники питания. Действительно, на базе радиоактивного изотопа трудно построить прямой преобразователь тепла в электроэнергию (на термоэлементах) большой мощности. В этом отношении намного перспективнее использование цепной ядерной реакции. В космическом пространстве в 2000 находилось 55 ядерных реакторов. Использование атомной-тепловой энергии можно разделить на машинное и безмашинное. Необходимую мощность дают компактные ядерно-энергетические установки (ЯЭУ), которые из-за ограниченных размеров спутников должны работать без габаритных парогенераторов или турбин. Прямое преобразование ядерной тепловой энергии в электрическую имеет решающие преимущества по сравнению с машинным для автономных реакторных энергоустановок сравнительно небольшой мощности (от 3 кВт до 3-5 МВт) и большой ресурсоспособности (от 3 лет непрерывной эксплуатации до 10 лет в перспективе).

    Ядерная электрическая установка (ЯЭУ) предназначена для питания электроэнергией аппаратуры космических аппаратов используется принцип непосредственного преобразования тепловой энергии ядерного реактора в электричество в полупроводниковом термоэлектрическом генераторе. Захоронение ЯЭУ после окончания эксплуатации производится переводом на орбиту, где время существования реактора достаточно для распада продуктов деления до безопасного уровня (не менее 300 лет). В случае любых аварий с космическим аппаратом ЯЭУ имеет в своём составе высокоэффективную дополнительную систему радиационной безопасности, использующую аэродинамическое диспергирование реактора до безопасного уровня.

    Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетание с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии - ядерный реактор и преобразователь тепловой энергии в электрическую были объединены в единый агрегат - реактор-преобразователь.

    Типичная ядерная энергетическая установка содержит: реактор на быстрых нейтронах с боковым бериллиевым отражателем, включающим 6 цилиндрических регулирующих стержней, холодильник излучатель; 2 контура теплоносителя (эвтектика натрия - калия), электромагнитный насос, термоэлектрический генератор и приводы регулирующих стержней; теневую радиационную защиту гидрида лития обеспечивающую ослабление ионизирующих излучений реактора до уровня допустимых для приборов и оборудования космического аппарата; - излучатель для сброса тепла в космос со второго контура теплоносителя; приставку с агрегатами системы выброса сборки тепловыделяющих элементов реактора из корпуса реактора. Мощность электрическая - 3 кВт, мощность тепловая - 100 кВт, масса ЯЭУ - 930 кг, загрузка урана 235 - 30 кг.

    В 50-х годах в СССР начаты работы по созданию реакторной термоэлектрической энергоустановки «БУК» с малогабаритным реактором на быстрых нейтронах и находящимся вне реактора термоэлектрическим генератором на полупроводниковых элементах. Более 30 установок «БУК» эксплуатировались на космических аппаратах серии «Космос» в течение ряда лет.

    В 1964 в Институте ядерной энергии им. И.В.Курчатова запущен первый реактор прямого преобразования тепла в электричество, «Ромашка». Основой является высокотемпературный реактор на быстрых нейтронах, активная зона которого состоит из дикарбида урана и графита. Активная зона реактора (цилиндр) окружена бериллиевым отражателем. Температура в центре активной зоны - 1770°С, на наружной поверхности реактора – 1000°С. На наружной поверхности отражателя находится термоэлектрический преобразователь, состоящий из большого числа кремний-германиевых полупроводниковых пластин, внутренние стороны которых нагреваются теплом, выделяемым реактором, а наружные охлаждаются. Неиспользованное тепло с преобразователя излучается в окружающее пространство ребристым холодильником-излучателем. Тепловая мощность реактора 40 квт. Снимаемая электрическая мощность с термоэлектрического преобразователя 500 вт.

    Высокотемпературный ядерный реактор-преобразователь позволяет непосредственно получать электроэнергию без участия каких-либо движущихся рабочих тел и механизмов. В «Ромашке» наиболее полно воплощены идеи реактора прямого преобразования: там нет ничего движущегося. В отличие от американского реактора SNAP-10А там нет теплоносителя и насосов. Американцы вынуждены были отказаться от своего варианта реактора из-за непрочных позиций в области высокотемпературного материаловедения.

    Реактор-преобразователь "Ромашка" успешно проработал 15000 часов (вместо ожидаемых 1000 ч.), выработал при этом - 6100 кВт.час электроэнергии. Выполненный комплекс работ с установкой "Ромашка" показал её абсолютную надёжность и
    безопасность.

    Эффективность работы подобных генераторов можно повысить путём использования вместо термоэлектрического преобразователя энергии плоских модульных термоэмиссионных элементов, располагаемых на границе активной зоны и радиального отражателя.

    На базе установки "Ромашка" была создана опытная установка «Гамма» - прототип автономной транспортируемой АЭС «Елена» электрической мощностью до 500 кВт, предназначенной для энергоснабжения отдаленных районов.

    Первая в нашей стране космическая ядерная электрическая станции (КАЭС) «БЭС-5» с гомогенным реактором на быстрых нейтронах и термоэлектрическим генератором (ТЭГ) разрабатывалась для электропитания аппаратуры космического аппарата радиолокационной разведки на участке выведения и в течение всего времени активного существования спутника на круговой орбите высотой порядка 260 км. Генерирующая выходная мощность "БЭС-5" 2800 Вт, с ресурсом 1080 часов. 3 октября 1970 осуществлён запуск ЯЭУ «БЭС-5» в составе космического аппарата радиолокационной разведки («Космос-367»). После проведения 9 запусков ЯЭУ "БЭС-5" в 1975 была принята на вооружение ВМФ СССР. Всего к моменту снятия с эксплуатации ЯЭУ «БЭС-5» (1989) была запущена в космос 31 установка.

    В процессе эксплуатации установки проводились работы по доработке и модернизации БЭС, связанные с повышением радиационной безопасности, увеличением электрической мощности в конце ресурса до 3 кВт и увеличением ресурса до 6-12 месяцев. Первый запуск модернизированного варианта ЯЭУ был произведён 14 марта 1988 года в составе космического аппарата «Космос-1932».

    Табл.2 Радионуклидные термоэлектрические генераторы (РТГ) и блоки обогрева (БО) на полонии-210 и плутонии-238, источник гамма-излучения (ИИ) на тулии-170


    Типичным представителем КАЭС, используемых в качестве источников питания мощных радиотехнических спутников (космических радиолокационных станций и телетрансляторов), с прямым преобразованием тепла в электричество, является установка «Бук», которая по сути дела, представляла собой ТЭГ - полупроводниковый преобразователь Иоффе, только вместо керосиновой лампы в нем использовался ядерный реактор. Как обычно, один полупроводниковый спай помещался в холод, а другой - в тепло: между ними пробегал электрический ток. С холодом в космосе все в порядке - он повсюду. Для тепла же годился металлический теплоноситель, что омывал портативный ядерный реактор. Это был быстрый реактор мощностью до 100 кВт. Полная загрузка высокообогащенного урана составляла около 30 кг. Тепло из активной зоны передавалось жидким металлом - эвтектическим сплавом натрия с калием полупроводниковым батареям. Электрическая мощность достигала 5 кВт. Время работы «Бука» - 1-3 месяца. теперь уже в качестве, продолжались до начала перестройки. С 1970 по 1988 год в космос запустили около 30 радиолокационных спутников с ядерно-энергетическими установками "Бук" с полупроводниковыми реакторами-преобразователями. Если установка отказывала, спутник переводили на орбиту длительного существования высотой 1000 км.

    Основные достижения отечественной науки и техники в области термоэлектрической технологии для космических миссий связаны с НИОКР по созданию ЯЭУ «Ромашка», КЯЭУ «БУК» и реальным опытом ее эксплуатации в космосе в период 1970-1988 гг. в ходе 32-х запусков.

    ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ С ТЕРМОЭМИССИОННЫМИ ПРЕОБРАЗОВАТЕЛЯМИ

    В СССР параллельно работам по созданию ЯЭУ с термоэлектрическими генераторами проводились работы по ЯЭУ с термоэмиссионными преобразователями, имеющими более высокие технические характеристики. По сути, здесь используется тот же, что и в полупроводниковом преобразователе принцип, но вместо холодного и горячего спая применяют горячий карбидурановый катод и холодный стальной анод, а между ними находятся легко ионизирующиеся пары цезия. Эффект - электрическая разность потенциалов, то есть натуральная космическая электростанция. Термоэмиссионное преобразование по сравнению с термоэлектрическим позволяет увеличить к.п.д., повысить ресурс и улучшить массогабаритные характеристики энергоустановки и космического аппарата в целом. Принцип термоионного преобразования тепловой энергии в электрическую заключается в том, что раскаленная выделяемым в реакторе теплом металлическая поверхность эффективно испускает ионы, адсорбируемые расположенной с небольшим зазором охлажденной стенкой.

    В 1970-71 в СССР была создана термоэмиссионная ядерно-энергетическая установка «Топаз» (Термоэмиссионный Опытный Преобразователь в Активной Зоне), в которой использовался тепловой реактор мощностью до 150 кВт. Полная загрузка урана составляла 31,1 кг 90% урана-235. Вес установки 1250 кг. Основой реактора были тепловыделяющие элементы – «гирлянды». Они представляли собой цепочку термоэлементов: катод - "наперсток" из вольфрама или молибдена, заполненный окисью урана, анод - тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода достигала 1650oC. Электрическая мощность 10 кВт. «Топазы» обладали кпд теплоэлектрического преобразования 5-10% против 2-4% у прежних реакторов.

    Помимо урана-235 перспективен в качестве топлива реакторов космического назначения диоксид плутония-238, благодаря своему очень высокому удельному энерговыделению. В этом случае относительно низкий кпд термоэмиссионного реактора прямого преобразования компенсируется активным энерговыделением плутония-238.

    Испытаны два термоэмиссионных реактора-преобразователя на промежуточных нейтронах (без замедлителя) - «Топаз-1» и «Топаз-2» электрической мощностью 5 и 10 квт соответственно. В установке «Топаз» прямое (безмашинное) преобразование энергии осуществляется во встроенных в активную зону малогабаритного теплового реактора электрогенерирующих каналов. Установка «Топаз-1» снабжена тепловым реактором-преобразователем и жидкометаллическим теплоносителем (натрий-калий или литий). Принцип прямого преобразования тепловой энергии в электрическую заключается в нагреве в вакууме катода до высокой температуры при поддержании анода относительно холодным, при этом с поверхности катода «испаряются» (эмиттируют) электроны, которые, пролетев межэлектродный зазор, «конденсируются» на аноде, и при замкнутой наружной цепи по ней идёт электрический ток. Основное преимущество такой установки по сравнению с электромашинными генераторами - отсутствие движущихся частей. Реализация концепции реактора-преобразователя на быстрых нейтронах с литиевым охлаждением в будущем возможно позволяет решить задачу создания установки электрической мощностью 500-1000 кВт и более.

    Ядерная энергетическая установка содержит: термоэмиссионный реактор-преобразователь с замедлителем из гидрида циркония и боковым бериллиевым отражателем, включающим поворотные органы регулирования; систему реактора-преобразователя: приводы органов регулирования подачи цезия в электрогенерирующие каналы, скомпонованные в блок, расположенный перед реактором-преобразователем; теневую радиационную защиту из гидрида лития, обеспечивающего ослабление радиационного излучения реактора до уровней, допустимых для приборов космического аппарата; систему отвода неиспользованного тепла от реактора теплоносителем (эвтектика натрия-калия), включающая электромагнитный насос, питаемый электроэнергией от реактор-преобразователя, излучатель, для сброса тепла в космическое пространство и другие агрегаты. Мощность электрическая - 5 кВт, мощность тепловая - 150 кВт, ресурс, включая работу до 1 года на 100 кВт режиме - 7 лет, загрузка урана 235 - 11,5 кг, масса - 980 кг.

    Табл.3 Краткая характеристика ЯЭУ «Топаз 1»


    Ядерное топливо в Топазе-1 (диоксид урана обогащенный ураном-235) заключено в сердечнике из тугоплавкого материала, служащей катодом (эмиттером) для электронов. Тепло, выделяющееся в результате деления урана в реакторе, разогревает эмиттер до 1500-1800 градусов Цельсия, в результате чего происходит испускание электронов. Попадая на анод (коллектор), электроны обладают достаточной энергией, чтоб во внешней замкнутой цепи между электродами термоэмиссионного преобразователя (эмиттером и коллектором) произвести работу во внешней нагрузке. Межэлектродный зазор составляет несколько десятых долей миллиметра. Пары цезия, вводимые в межэлектродный зазор (МЭЗ), существенно активизируют процесс получения электроэнергии в реакторе. В конструкции энергоустановки реализована расходная цезиевая система, в которой пары цезия прокачивались через МЭЗ для удаления примесей. Прошедшие МЭЗ пары цезия поглощались ловушкой на основе пирографита, а газообразные примеси удалялись в космическое пространство. Цезиевая система имела термостат-генератор паров цезия с электронагревателями, с помощью которых обеспечивалось поддержание заданной температуры наиболее холодной зоны термостата. В генераторе паров цезия применялся ряд устройств, обеспечивающих удержание жидкой фазы в определенном положении и препятствующих её попаданию в парообразный тракт при действии малых перегрузок в космическом полете. В примененной конструкции генератора паров цезия максимальное количество цезия составило 2,5 кг, что при заданном расходе паров, определяемом проводимостью дросселя на выходе из РП, однозначно ограничивало возможный ресурс ЯЭУ. Требование минимизации массы и габаритов приходилось реализовывать с учетом того обстоятельства, что теплоотвод в космическом пространстве возможен лишь посредством излучения за счет использования специальной конструкции холодильника-излучателя. Реализация системы теплоотвода существенно затруднена, поскольку в ней используются агрессивная жидкометаллическая натрий-калиевая эвтектика. К этому добавляются высокие требования к надежности автономного функционирования и ресурсоспособности ЯЭУ в условиях перегрузок при выведении на орбиту, произвольной ориентации и отсутствия сил тяжести при работе на орбите, необходимости обеспечения ядерной и радиационной безопасности в условиях возможных аварий ракет-носителей при выведении КА с ЯЭУ на орбиту, а также обеспечения метеорной безопасности в космическом полёте и т.п. Ядерная электроэнергетическая установка «Топаз» предназначена для питания электроэнергией аппаратуры космических аппаратов военного применения. Использование на спутниках ядерных реакторов позволяет обеспечить стабильное электропитание не зависимо от расположения на орбите.
    Ядерная и радиационная безопасность обеспечивается конструкцией ядерного реактора. При любых авариях, включая гипотетические с ракетой-носителем на стартовой позиции и на участке выведения на орбиту, ядерный реактор остается подкритичным. За счет введения блокировок пуск реактора невозможен по достижению орбиты. Блокировка снимается по радиокоманде с Земли только после подтверждения вывода на расчетную орбиту непосредственными траекторными измерениями. Высота орбита выбрана из условия, чтобы существование космического аппарата после прекращения функциональной установки с учетом любых аварийных ситуаций с установкой было достаточно для распада продуктов деления до безопасного уровня. Это время превышает 350 лет. Таким образом обеспечивается гарантированная безопасность населения Земли при использовании установок подобного типа.

    ЯЭУ «Топаз-1» разрабатывалась для спутников радиолокационной разведки, «Топаз-2» – для космических аппаратов системы непосредственного телевизионного вещания из космоса. Первый летный образец - спутник «Космос-1818» с установкой «Топаз» вышел на радиационно безопасную стационарную круговую орбиту высотой 800 км 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник – «Космос-1876» был запущен через год. Он отработал на орбите почти в два раза дольше. Успех «Топазов» стимулировал разработку ряда проектов реакторов с термоэмиссионными преобразователями, в частности ядерно-энергетической установки электрической мощностью до 500 кВт на основе реактора с литиевым охлаждением.

    На основе ЯЭУ «БЭС» и «Топаз» подготовлен ряд проектов установок с улучшенными характеристиками. Подготовлены технические предложения по термоэлектрической ЯЭУ «Заря-1» для космического аппарата оптико-электронной разведки. ЯЭУ «Заря-1» отличается от «БЭС» уровнем электрической мощности (5,8 кВт против 2,9 кВт) и повышенным ресурсом (4320 часов против 1100 часов). В 1978 создана ЯЭУ «Заря-2» электрической мощностью 24 кВт и ресурсом 10000 часов, а потом и космическая ядерная энергодвигательная установка «Заря-3» электрической мощностью 24,4 кВт и ресурсом 1,15 года. Она предназначалась для создания импульсов тяги коррекции орбиты спутников и энергообеспечения специальной аппаратуры.

    Термоэмиссионная космическая ядерная установка «ТОПАЗ 100/40» представляет собой двухрежимную ядерную энергетическую установку (ЯЭУ). Она предназначена для питания электроэнергией электроракетных двигателей (ЭРД) при выводе на высокую (вплоть до геостационарной) орбиты спутников системы спутниковой связи «Космическая звезда» (Space Star) и питания электроэнергией бортовой аппаратуры. Вывод на мощность реактора энергоустановки происходит только при достижении космическим аппаратом радиационно-безопасной орбиты (800 км и выше). Конструкция ЯЭУ удовлетворяет принятым на 47 сессии Генеральной Ассамблеи ОО документа «Принципы, касающиеся использования ядерных источников в космическом пространстве». В стартовом положении ЯЭУ размещена в отсеке космического аппарата диаметром 3,9 метра и длиной 4,0 метра под обтекатель. В орбитальном положении ЯЭУ раздвинута (реактор максимально отдалён от аппаратуры) и имеет длину 16,0 метров и диаметр 4 метра.

    Ядерная энергетическая установка содержит: термоэмиссионный реактор-преобразователь с обслуживающими системами: привод органов регулирования, подача рабочего тела (цезий) в электрогенерирующие каналы; теневую радиационную защиту из гидрида лития, обеспечивающую ослабление радиационного излучения реактора до уровня, допустимого для приборов космического аппарата; систему отвода неиспользованного тепла от реактора с жидкометаллическим (эвтектический сплав натрия и калия) теплоносителем, включающую электромагнитный насос, холодильник излучатель, состоящий из 9 панелей на тепловых трубах, для сброса тепла в космическое пространство и другие агрегаты. Мощность электрическая - 40 кВт, мощность электрическая в режиме питания ЭРД - 100 кВт, ресурс, включая работу до 1 года на 100 кВт режиме - 7 лет, масса ЯЭУ - 4400 кг, загрузка урана 235 - 45 кгВо избежание быстрого падения ЯЭУ на Землю спутники по завершении активного существования переводятся на орбиту захоронения высотой около 1000 км, где отработавший реактор должен просуществовать oт 300 до 600 лет. На подобную орбиту переводятся и аварийные спутники. Сделать это, однако, удавалось не всегда. За почти 20 лет запусков было четыре случая падения спутника на Землю: два - в океан и один - на сушу.

    Историческое первенство в космических ядерных авариях принадлежит США - в 1964 г. не смог выйти на орбиту американский навигационный спутник с атомным реактором на борту, и этот реактор развалился в атмосфере вместе со спутником на куски.

    В СССР первая авария связана с запущенным 18 сентября 1977 4300-килограммовым спутником серии УС-А (псевдоним «Космос-954», параметры орбиты: перигей 259 км, апогей 277 км, наклонение 65 градусов). Спутник входил в состав спутниковой системы морской космической разведки и целеуказания МКРЦ «Легенда», предназначенной для обнаружения кораблей вероятного противника и выдачи данных для применения по ним нашим флотом крылатых ракет. В конце октября 1977 «Космос-954» прекратил регулярные коррекции орбиты, но перевести его на орбиту захоронения не удалось. По последующим сообщениям ТАСС, 6 января 1978 спутник внезапно разгерметизировался, из-за чего бортовые системы вышли из строя. Неуправляемое снижение аппарата под действием верхних слоев атмосферы завершилось 24 января 1978 сходом с орбиты и падением радиоактивных обломков па севере Канады в окрестности Большого Невольничьего озера. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. Тем не менее радиоактивный космический мусор оказался разбросанным на северо-западе Канады на площади в несколько тысяч квадратных километров. СССР согласился выплатил Канаде 3 миллиона долларов, составивших 50% стоимости операции «Morning Light» по очистке района падения «Космоса-954».

    28 декабря 1982 работавший с 30 августа «Космос-1402» не удалось перевести на орбиту захоронений и он начал неконтролируемое снижение. Конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Активная зона вошла в атмосферу 7 февраля 1983 и радиоактивные продукты деления рассеялись над Южной Атлантикой.

    В апреле 1988 была утеряна связь с «Космосом-1900», выведенным на орбиту в декабре 1987. В течение пяти месяцев спутник неконтролируемо снижался, и наземные службы не могли дать команду ни на увод реактора на высокую орбиту, ни на отделение активной зоны для более безопасного ее схода с орбиты. К счастью, за пять суток до ожидавшегося входа в атмосферу, 30 сентября 1988 сработала система автоматического увода реактора, включившаяся ввиду исчерпания запаса топлива в системе ориентации спутника.

    Продолжением источников питания типа «Топаз» явилась термоэмиссионная ядерная энергетическая установка «Енисей-Топаз». Электрогенерирующий канал - одноэлементный, мощность электрическая - 5 кВт, ресурс - до 3 лет.

    Хотя само по себе происшествие не нанесло материального ущерба, его наложение на предшествовавшие катастрофы «Челленджера» и Чернобыльской АЭС привело к протестам против использования ядерных энергоустановок в космосе. Это обстоятельство стало дополнительным фактором, повлиявшим на прекращение полетов спутников с космическими локаторами в 1988. Впрочем, основной причиной отказа от космических локаторов с ядерным энергопитанием стали не призывы мировой общественности и уж тем более, не создаваемые реакторами помехи для гамма-астрономии, а низкие эксплуатационные характеристики.

    ПЕРСПЕКТИВЫ РАЗВИТИЯ ЯДЕРНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

    Табл. 4 Основные характеристики КЯЭУ «БУК» и «БУК-ТЭМ»

    Полная загрузка высокообогащенного урана в «Бук» 30 кг, теплоноситель - жидкий металл - эвтектический сплав натрия с калием. Источник электричества - полупроводниковый преобразователь. Электрическая мощность 5 кВт. В «Топазе» использовался тепловой реактор мощностью 150 кВт. Полная загрузка урана 12 кг. Основой реактора были тепловыделяющие элементы – «гирлянды», представляющие собой цепочку термоэлементов: катод – «наперсток» из вольфрама или молибдена, заполненный окисью урана, анод - тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода 1650oC, электрическая мощность установки 10 кВт.

    С 1970 по 1988 год СССР(Россия) запустил в космос около 30 радиолокационных спутников с ядерно-энергетическими установками «Бук» с полупроводниковыми реакторами-преобразователями и два - с термоэмиссионными установками "Топаз".

    В настоящее время к космическим ядерным энергетическим установкам (КЯЭУ) нового поколения предъявляются следующие требования: интеграция ядерной энергетической установки в космическом аппарате, выводимым современными ракетоносителями (типа Протон, Протон-М, Ангара); ядерная и радиационная безопасность, в т.ч. при возможной аварии (на Землю падает «чистый» реактор); транспортный энергетический режим – на высотах выше радиационно-безопасной орбиты 800 км; подкритическое состояние реактора при всех видах аварий; отрицательный температурный коэффициент реактивности при рабочих параметрах; резервирование узлов, подверженных ресурсной деградации; комбинация различных систем преобразования энергии; преимущественная отработка элементов и узлов во внереакторных условиях; возможность продолжительного нахождения в космосе до начала работы ЯЭУ; выходная электрическая мощность 50÷400 кВтЭЛ (при 115÷120 В), ресурс 7-10 (до 20) лет.

    В области термоэлектрических устройств в настоящее время в России подготовлен проект перехода от ядерной энергетической установки типа «Бук» к более совершенной «БУК-ТЭМ» (Табл.4).

    Опыт работ, проведенных в области термоэлектричества для КЯЭУ позволяет сделать вывод о практической возможности создания ТЭГ на основе Si-Ge ТБ/ТМ радиально-кольцевой геометрии в составе либо чисто термоэлектрических ЯЭУ, либо комбинированных ЯЭУ (термоэмиссия + термоэлектричество) с выходной электрической мощностью теплоэнергогенератора 10-100 кВтЭЛ для космических миссий 21-го века.

    Основные направления работ в термоэмиссии после завершения работ по программам создания КЯЭУ «ТОПАЗ» и ЯЭУ «Енисей» связаны с необходимостью радикального увеличения к.п.д. с уровня ~10% до 20-30%, ресурса работы электрогенерирующих каналов (ЭГК) и систем в составе ЯЭУ – с 1-2 лет до 10-20 лет при существенном ограничении массогабаритных характеристик. Выбор концепции термэмиссионного ЭГК и ЯЭУ определяется требованиями решаемой задачи, из которых важнейшими являются ресурс, энергонапряженность, в том числе одно- или двухрежимность (с форсированием электрической мощности), величина выходного напряжения электрического тока, необходимость внереакторного подтверждения ресурса и проверки основных технических решений на стендах с имитационным электронагревом и т.п.

    Табл.5 Основные характеристики ЯЭУ «ТОПАЗ» и «ЭЛЬБРУС-400/200»


    Сегодня понятно, что термоэмиссия и термоэлектричество как в термоэмиссионных и термоэлектрических установках, так и при их комбинировании (термоэлектричество + термоэмиссия) в КЯЭУ нового поколения имеют несомненную перспективу использования. При этом термоэмиссия имеет несомненные преимущества перед другими статическими преобразователями и известными динамическими преобразователями. Подобные установки могут быть эффективно использованы для решения различных задач в космических миссиях 21-го века.